Loading...
Vietnam Geography App
Loading...
Vietnam Geography App
Khám phá biotechnology cơ bản, genetic engineering techniques, DNA manipulation, gene editing với CRISPR. Học molecular biology fundamentals và bioethics.
Design và execute complete CRISPR gene editing experiment để enhance insulin production trong bacterial cells, covering target design, guide RNA creation, và therapeutic applications
Successfully engineered E. coli producing functional human insulin at 150+ mg/L với 95% biological activity compared to commercial insulin
# CRISPR Gene Editing for Enhanced Insulin Production: Complete Laboratory Protocol ## 1. Project Overview & Objective ### Scientific Goal: Engineer E. coli bacteria để produce human insulin at enhanced levels using CRISPR-Cas9 gene editing technology, creating a more efficient và cost-effective insulin production system cho diabetes treatment. ### Background Science: ``` Diabetes Impact: - 463 million people worldwide have diabetes - Type 1 diabetes requires daily insulin injections - Current insulin costs: $100-300+ per month - Biotechnology solution: Engineered bacteria producing human insulin CRISPR Technology: - Clustered Regularly Interspaced Short Palindromic Repeats - Cas9 nuclease cuts DNA at specific locations - Guide RNA directs Cas9 to target sequences - Allows precise genetic modifications - Revolutionary tool for biotechnology applications ``` ## 2. Experimental Design & Strategy ### Target Gene Analysis: ``` Human Insulin Gene (INS): - Location: Chromosome 11p15.5 - Size: 1,430 base pairs - Structure: 2 exons, 1 intron - Product: Proinsulin → processed to mature insulin - Challenges: Eukaryotic gene expression trong prokaryotic host Engineering Strategy: 1. Synthesize optimized insulin gene cho E. coli expression 2. Design CRISPR system để integrate gene into bacterial chromosome 3. Optimize expression levels through promoter engineering 4. Enhance protein folding và processing pathways 5. Scale up production cho pharmaceutical applications ``` ### CRISPR System Design: ``` # Guide RNA (gRNA) Design cho E. coli Integration Site Target Sequence Selection: - Integration site: lac operon region trong E. coli genome - Rationale: Well-characterized, inducible expression system - Target sequence: 5'-GCGTTATACATGCGTTGGCG-3' - PAM sequence: NGG (required cho Cas9 activity) # gRNA Sequence Design crRNA sequence: 5'-GCGUUAUACAUGCGUUGGCG-3' tracrRNA: Universal tracrRNA sequence Spacer length: 20 nucleotides (optimal cho Cas9 specificity) # Cas9 Protein Selection: - Streptococcus pyogenes Cas9 (SpCas9) - High efficiency và specificity - Well-characterized PAM requirements (NGG) - Extensive literature support ``` ## 3. Laboratory Materials & Equipment ### Biological Materials: ``` Bacterial Strains: - E. coli DH5α (cloning host) - E. coli BL21(DE3) (expression host) - Competent cells cho transformation Plasmids & Vectors: - pCas9 (Cas9 expression plasmid) - pgRNA (guide RNA expression plasmid) - pInsulin (insulin gene donor template) - Control plasmids cho validation Molecular Reagents: - Restriction enzymes (EcoRI, BamHI, HindIII) - T4 DNA ligase - Taq polymerase - dNTPs - Primers cho PCR amplification - Antibiotics (ampicillin, kanamycin, chloramphenicol) ``` ### Laboratory Equipment: ``` Essential Equipment: - PCR thermal cycler - Gel electrophoresis apparatus - UV transilluminator - Incubator shakers (37°C) - Centrifuge (benchtop và microcentrifuge) - Autoclave - Laminar flow hood - Spectrophotometer - Microscope Specialized Equipment: - Electroporator cho bacterial transformation - Protein purification system (FPLC) - SDS-PAGE apparatus - Western blotting equipment - ELISA plate reader ``` ## 4. Detailed Experimental Protocol ### Phase 1: CRISPR Component Preparation #### Step 1: Guide RNA Cloning ```bash # Design và synthesize gRNA oligonucleotides Forward oligo: 5'-CACCGCGTTATACATGCGTTGGCG-3' Reverse oligo: 5'-AAACCGCCAACGCATGTATAACGC-3' # Annealing reaction 1. Mix forward và reverse oligos (100 μM each) 2. Heat to 95°C cho 5 minutes 3. Cool slowly to room temperature (2°C/minute) 4. Dilute to 10 μM working concentration # Cloning into pgRNA vector 1. Digest pgRNA plasmid với BbsI enzyme 2. Treat với alkaline phosphatase 3. Ligate annealed oligos into linearized vector 4. Transform into E. coli DH5α 5. Select on kanamycin plates 6. Verify clones bằng sequencing ``` #### Step 2: Insulin Gene Optimization ```python # Codon optimization for E. coli expression original_sequence = "ATGGCCCTGTGGATGCGCCTCCTGCCCCTGCTGGCGCTGCTGGCCCTCTGGGGACCTGACCCAGCCGCAGCCTTTGTGAACCAACACCTGTGCGGCTCACACCTGGTGGAAGCTCTCTACCTAGTGTGCGGGGAACGAGGCTTCTTCTACACACCCAAGACCCGCCGGGAGGCAGAGGACCTGCAGGTGGGGCAGGTGGAGCTGGGCGGGGGCCCTGGTGCAGGCAGCCTGCAGCCCTTGGCCCTGGAGGGGTCCCTGCAGAAGCGTGGCATTGTGGAACAATGCTGTACCAGCATCTGCTCCCTCTACCAGCTGGAGAACTACTGCAACTAGACGCAGCCCGCAGGCAGCCCCACACCCGCCGCCTCCTGCACCGAGAGAGATGGAATAAAGCCCTTGAACCAGC" # E. coli optimized sequence optimized_sequence = """ ATGGCTCTGTGGATGCGTCTGCTGCCGCTGCTGGCTCTGCTGGCTCTGTGGGGTCCTGATCCGGCTGCTGCTTTTGTGAACCAGCATCTGTGTGGTTCTCATCCTGGTGGTAGTTCTCTGTATCTGGTGTGTGGTGAACGTGGTTTTTTTTATACTCCGAAAGATCCGCCTGGTGGTCAGCGTGATCTGCAGGTGGGTCAGGTGGAGCTGGGTGGTGGTCCGGGTGCTGGTAGTCTGCAGCCGCTGGCTCTGGAGGGTTCTCTGCAGAAGCGTGGTATTGTGGAACAATGTTGTACCAGCATCTGCTTCCGCTGTATCAGCTGGAGAATTATTGCAATCGTCGTCAGCCGCAGGCTGCTCCGCATCCGCCGCCTCCTGCATCGTGAGCGTCTGGAATAAAGCTCTGAATCAGC """ # Verification print(f"Original length: {len(original_sequence)} bp") print(f"Optimized length: {len(optimized_sequence)} bp") print(f"GC content optimization: Improved cho E. coli expression") ``` #### Step 3: Donor Template Construction ```bash # Create donor template với homology arms Upstream_homology: 500 bp sequence upstream của integration site Optimized_insulin_gene: Codon-optimized insulin sequence Downstream_homology: 500 bp sequence downstream của integration site # PCR amplification của components 1. Amplify upstream homology arm: Forward primer: 5'-GCTAGCATGCGTTATACATGC-3' Reverse primer: 5'-CTCGAGGTACCGCGTTATAC-3' 2. Amplify insulin gene: Forward primer: 5'-GTACCATGGCTCTGTGGATG-3' Reverse primer: 5'-GGATCCTTACAGCTGGAG-3' 3. Amplify downstream homology arm: Forward primer: 5'-GGATCCGCGTTATACATGCG-3' Reverse primer: 5'-AAGCTTGTACCGCGTTATAC-3' # Assembly bằng overlap PCR 1. Combine all three fragments trong equimolar ratios 2. Perform overlap PCR to create continuous donor template 3. Clone into cloning vector cho amplification 4. Verify bằng restriction mapping và sequencing ``` ## 5. CRISPR Transformation & Selection ### Bacterial Transformation Protocol: ```bash # Prepare competent E. coli cells 1. Grow E. coli overnight trong LB medium 2. Dilute 1:100 và grow to OD600 = 0.5 3. Harvest cells bằng centrifugation (4°C, 3000g, 10 min) 4. Wash 3x với ice-cold 0.1 M CaCl2 5. Resuspend trong 0.1 M CaCl2 với 15% glycerol 6. Aliquot và store at -80°C # Co-transformation với CRISPR components 1. Thaw competent cells on ice 2. Add plasmids: pCas9 (100 ng) + pgRNA (50 ng) + donor template (200 ng) 3. Incubate on ice cho 30 minutes 4. Heat shock: 42°C cho 90 seconds 5. Return to ice cho 2 minutes 6. Add SOC medium và recover at 37°C cho 1 hour 7. Plate on selective media (ampicillin + kanamycin) 8. Incubate overnight at 37°C ``` ### Screening cho Successful Integration: ```bash # PCR screening strategy 1. Colony PCR với flanking primers: Forward: Outside upstream homology arm Reverse: Inside insulin gene Expected size: 800 bp (integration) vs 300 bp (wild-type) 2. Confirmation PCR: Forward: Inside insulin gene Reverse: Outside downstream homology arm Expected size: 750 bp (only trong integrated clones) # Verification protocol 1. Select 20-30 colonies cho initial screening 2. Perform colony PCR với screening primers 3. Analyze products bằng gel electrophoresis 4. Sequence positive clones để confirm correct integration 5. Test insulin expression bằng SDS-PAGE và Western blotting ``` ## 6. Protein Expression & Purification ### Insulin Expression Optimization: ```bash # Expression testing protocol 1. Inoculate verified clones into LB + antibiotics 2. Grow to OD600 = 0.6 at 37°C 3. Induce với IPTG (0.1-1.0 mM range testing) 4. Sample at multiple time points (0, 2, 4, 6, 8 hours) 5. Analyze bằng SDS-PAGE để determine optimal conditions # Optimal conditions determined: - IPTG concentration: 0.5 mM - Induction temperature: 30°C (reduced inclusion bodies) - Expression time: 4 hours - Media: LB với 2% glucose ``` ### Protein Purification Protocol: ```bash # Cell lysis và protein extraction 1. Harvest cells bằng centrifugation (6000g, 10 min) 2. Resuspend trong lysis buffer (20 mM Tris pH 8.0, 500 mM NaCl) 3. Add lysozyme (1 mg/ml) và incubate 30 min on ice 4. Sonicate: 10 pulses, 30 sec each, with cooling 5. Centrifuge để remove cell debris (12000g, 20 min) # Nickel affinity purification (if His-tagged) 1. Apply lysate to Ni-NTA column 2. Wash với binding buffer (20 mM imidazole) 3. Elute với increasing imidazole concentrations 4. Analyze fractions bằng SDS-PAGE 5. Pool insulin-containing fractions # Protein refolding (for inclusion bodies) 1. Dissolve inclusion bodies trong 6 M guanidine-HCl 2. Slowly dilute into refolding buffer over 24 hours 3. Remove aggregates bằng centrifugation 4. Concentrate và store trong appropriate buffer ``` ## 7. Quality Control & Analysis ### Protein Characterization: ```bash # SDS-PAGE analysis 1. Prepare 15% polyacrylamide gel 2. Load samples: molecular weight markers, crude extract, purified protein 3. Run at 150V cho 1 hour 4. Stain với Coomassie Blue 5. Expected insulin size: ~6 kDa (A chain) + ~3 kDa (B chain) # Western blotting confirmation 1. Transfer proteins to PVDF membrane 2. Block với 5% milk trong TBST 3. Incubate với anti-insulin antibody (1:1000) 4. Secondary antibody: HRP-conjugated (1:5000) 5. Develop với chemiluminescent substrate 6. Confirm insulin-specific bands ``` ### Functional Activity Testing: ```bash # Glucose uptake assay trong cell culture 1. Prepare 3T3-L1 adipocytes trong 96-well plates 2. Treat cells với purified insulin at various concentrations 3. Add fluorescent glucose analog (2-NBDG) 4. Measure glucose uptake bằng fluorescence 5. Compare to commercial insulin standard # Expected results: - Dose-dependent glucose uptake - EC50 similar to commercial insulin - Maximum response at 100 nM insulin - Biological activity confirmation ``` ## 8. Data Analysis & Interpretation ### Quantitative Analysis: ```python # Protein yield calculation total_protein_mg = 150 # mg from 1L culture insulin_purity_percent = 85 # from densitometry insulin_yield_mg = total_protein_mg * (insulin_purity_percent/100) print(f"Insulin yield: {insulin_yield_mg} mg per liter culture") print(f"Commercial comparison: 10x improvement over standard methods") # Economic impact analysis production_cost_per_mg = 2.50 # USD commercial_insulin_cost = 75.00 # USD per mg cost_reduction = ((commercial_insulin_cost - production_cost_per_mg) / commercial_insulin_cost) * 100 print(f"Cost reduction: {cost_reduction:.1f}%") print(f"Potential savings: ${commercial_insulin_cost - production_cost_per_mg:.2f} per mg") ``` ### Statistical Analysis: ```r # R script for activity assay analysis library(drc) # Dose-response curve fitting insulin_conc <- c(0.1, 0.3, 1, 3, 10, 30, 100, 300) # nM glucose_uptake <- c(12, 18, 28, 45, 68, 82, 95, 97) # relative units # Fit four-parameter logistic model model <- drm(glucose_uptake ~ insulin_conc, fct = LL.4()) summary(model) # Calculate EC50 ED(model, 50) # Expected: ~10 nM (similar to commercial insulin) # Statistical significance testing t.test(engineered_insulin_activity, commercial_insulin_activity) # p-value < 0.05 indicates significant activity ``` ## 9. Results Summary & Conclusions ### Experimental Outcomes: ``` CRISPR Integration Efficiency: 75% của screened colonies Insulin Expression Level: 150 mg/L culture Protein Purity: 85% after single-step purification Biological Activity: 95% của commercial insulin standard Cost Reduction: 96% compared to current production methods Key Achievements: ✓ Successful CRISPR-mediated gene integration ✓ High-level insulin expression trong E. coli ✓ Functional protein với biological activity ✓ Scalable production method ✓ Significant cost reduction potential ``` ### Future Applications: ``` Immediate Applications: - Scale-up cho pharmaceutical production - Optimization cho different insulin variants - Development của long-acting insulin formulations - Application to other therapeutic proteins Long-term Impact: - Democratization của insulin access globally - Template cho other protein therapeutics - Advancement của CRISPR biotechnology applications - Contribution to personalized medicine ``` This comprehensive CRISPR gene editing experiment demonstrates the power của modern biotechnology to address global health challenges while providing hands-on experience với cutting-edge molecular biology techniques.
Genentech, Inc. & Eli Lilly
Diabetes patients dependent on animal insulin với limited supply, allergic reactions, và batch variability. Growing diabetic population creating supply crisis, estimated 100M+ diabetics worldwide by 2000.
Pioneered recombinant DNA technology để produce human insulin trong E. coli bacteria. Cloned human insulin gene into bacterial plasmids, optimized expression systems, và developed large-scale fermentation processes cho commercial production.
Humulin became first FDA-approved recombinant DNA drug (1982). Revolutionized diabetes treatment với unlimited supply của pure human insulin. Generated $2B+ annual revenue, treating 50M+ diabetics globally. Eliminated animal insulin allergies và standardized potency.